Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Adaptive Decision Tree Regression Modeling for the Output Power of Large-Scale Solar (LSS) Farm Forecasting

Authors: Nabilah Mat Kassim; Sathiswary Santhiran; Ammar Ahmed Alkahtani; Mohammad Aminul Islam; Sieh Kiong Tiong; Mohd Yusrizal Mohd Yusof; Nowshad Amin;

An Adaptive Decision Tree Regression Modeling for the Output Power of Large-Scale Solar (LSS) Farm Forecasting

Abstract

The installation of large-scale solar (LSS) photovoltaic (PV) power plants continues to rise globally as well as in Malaysia. The data provided by LSS PV consist of five weather stations with seven parameters, a 22-unit inverter, and 1-unit PQM Meter Grid as a big dataset. These big data are rapidly changing every minute, they lack data quality when missing data, and need to be analyzed for a longer duration to leverage their benefits to prevent misleading information. This paper proposed the forecasting power LSS PV using decision tree regression from three types of input data. Case 1 used all 35 parameters from five weather stations. For Case 2, only seven parameters were used by calculating the mean of five weather stations. While Case 3 was chosen from an index correlation of more than 0.8. The analysis of the historical data was carried out from June 2019 until December 2020. Moreover, the mean absolute error (MAE) was also calculated. A reliability test using the Pearson correlation coefficient (r) and coefficient of determination (R2) was done upon comparing with actual historical data. As a result, Case 2 was proposed to be the best input dataset for the forecasting algorithm.

Keywords

Environmental effects of industries and plants, forecast, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, decision tree regression, PV plant output, large-scale solar PV, GE1-350, global irradiance, energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold