Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2011 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2011
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Edible Energy Return on Investment (EEROI) Analysis of Wheat and Rice in Pakistan

Authors: Ali S. Pracha; Timothy A. Volk;

An Edible Energy Return on Investment (EEROI) Analysis of Wheat and Rice in Pakistan

Abstract

Agriculture is the largest sector of Pakistan’s economy, contributing almost 22% to the GDP and employing almost 45% of the total labor force. The two largest food crops, wheat and rice, contribute 3.1% and 1.4% to the GDP, respectively. The objective of this research was to calculate the energy return on investment (EROI) of these crops on a national scale from 1999 to 2009 to understand the size of various energy inputs and to discuss their contributions to the energy output. Energy inputs accounted for within the cropping systems included seed, fertilizer, pesticide, human labor, tractor diesel, irrigation pump electricity and diesel, the transport of fertilizer and pesticide, and the embodied energy of tractors and irrigation pumps. The largest per-hectare energy inputs to wheat were nitrogen fertilizer (52.6%), seed (17.9%), and tractor diesel (9.1%). For rice, the largest per-hectare energy inputs were nitrogen fertilizer (32%), tube well diesel (19.8%), and pesticide (17.6%). The EROI of wheat showed a gradual downward trend between 2000 and 2006 of 21.3%. The trend was erratic thereafter. Overall, it ranged from 2.7 to 3.4 with an average of 2.9 over the 11-year study period. The overall trend was fairly consistent compared to that of rice which ranged between 3.1 and 4.9, and averaged 3.9. Rice’s EROI dipped sharply in 2002, was erratic, and remained below four until 2007. It rose sharply after that. As energy inputs increased, wheat outputs increased, but rice outputs decreased slightly. Rice responded to inputs with greater output and an increase in EROI. The same was not true for wheat, which showed little change in EROI in the face of increasing inputs. This suggests that additional investments of energy in rice production are not improving yields but for wheat, these investments are still generating benefits. The analysis shows quantitatively how fossil energy is a key driver of the Pakistani agricultural system as it traces direct and indirect energy inputs to two major food crops.

Keywords

TJ807-830, energy return on investment, TD194-195, Renewable energy sources, wheat/rice output energy, per-hectare energy usage, GE1-350, energy return on investment; per-hectare energy usage; wheat/rice output energy; wheat/rice input energy, wheat/rice input energy, Environmental effects of industries and plants, Environmental sciences, jel: jel:Q, jel: jel:Q0, jel: jel:Q2, jel: jel:Q3, jel: jel:Q5, jel: jel:O13, jel: jel:Q56

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
gold