
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

doi: 10.3390/su7010988
Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms), characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i) increase nutrient availability for production of high yielding, high quality crops; (ii) protect crops from pests, pathogens, weeds; and (iii) manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.
- University of Nebraska System United States
- University of Missouri United States
- Grassland, Soil and Water Research Laboratory United States
- Northern Great Plains Research Laboratory United States
- Washington State University United States
TJ807-830, TD194-195, 630, Renewable energy sources, soil organic matter (SOM), GE1-350, soil biology; sustainable agriculture; soil health; soil management; soil organic matter (SOM), soil health, Environmental effects of industries and plants, soil biology, sustainable agriculture, Environmental sciences, soil management, jel: jel:Q, jel: jel:Q0, jel: jel:Q2, jel: jel:Q3, jel: jel:Q5, jel: jel:O13, jel: jel:Q56
TJ807-830, TD194-195, 630, Renewable energy sources, soil organic matter (SOM), GE1-350, soil biology; sustainable agriculture; soil health; soil management; soil organic matter (SOM), soil health, Environmental effects of industries and plants, soil biology, sustainable agriculture, Environmental sciences, soil management, jel: jel:Q, jel: jel:Q0, jel: jel:Q2, jel: jel:Q3, jel: jel:Q5, jel: jel:O13, jel: jel:Q56
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).304 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
