
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Structural Performance of Reinforced RCA Concrete Beams Made by a Modified EMV Method

doi: 10.3390/su9010131
This study aims to show the effect of a modified equivalent mortar volume (EMV) method on the flexural performance of recycled concrete aggregate (RCA). To verify this, an experimental study was carried out firstly by testing fresh and hardened material properties of RCA concrete specimens made by two different mixture design methods, i.e., the modified EMV method and the conventional American Concrete Institute (ACI) method. The flexural performance of five reinforced recycled concrete (RRC) beams mixed with different mixture designs was then investigated. Test results confirmed that the elastic moduli of the RCA concrete specimens made using the modified EMV method are greater than those of the conventional ACI mixture, while the drying shrinkage tended to decrease. The ultimate strengths of RRC beams mixed with the modified EMV method are as much as five percent greater than that achieved with the conventional ACI mixture.
- Hongik University Korea (Republic of)
- Hongik University Korea (Republic of)
Environmental effects of industries and plants, elastic modulus, TJ807-830, reinforced concrete, TD194-195, Renewable energy sources, Environmental sciences, recycled concrete aggregate, flexural strength, recycled concrete aggregate; elastic modulus; equivalent mortar volume; reinforced concrete; flexural strength, equivalent mortar volume, GE1-350
Environmental effects of industries and plants, elastic modulus, TJ807-830, reinforced concrete, TD194-195, Renewable energy sources, Environmental sciences, recycled concrete aggregate, flexural strength, recycled concrete aggregate; elastic modulus; equivalent mortar volume; reinforced concrete; flexural strength, equivalent mortar volume, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
