Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2017
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temperature and Cardiovascular Mortality Associations in Four Southern Chinese Cities: A Time-Series Study Using a Distributed Lag Non-Linear Model

Authors: Huang, Jixia; Tan, Jing; Yu, Weiwei;

Temperature and Cardiovascular Mortality Associations in Four Southern Chinese Cities: A Time-Series Study Using a Distributed Lag Non-Linear Model

Abstract

Few studies on population-specific health effects of extreme temperature on cardiovascular diseases (CVDs) deaths have been conducted in the subtropical and tropical climates of China. We examined the association between extreme temperature and CVD across four cities in China. We performed a two-stage analysis; we generated city-specific estimates using a distributed lag non-linear model (DLNM) and estimated the overall effects by conducting a meta-analysis. Heat thresholds of 29 °C, 29 °C, 29 °C, and 30 °C and cold thresholds of 6 °C, 10 °C, 14 °C, and 15 °C were observed in Hefei, Changsha, Nanning, and Haikou, respectively. The lag periods for heat-related CVD mortality were observed only for 0–2 days, while those of cold-related CVD mortality were observed for 10–15 days. The meta-analysis showed that a 1 °C increase above the city-specific heat threshold was associated with average overall CVD mortality increases of 4.6% (3.0%–6.2%), 6.4% (3.4%–9.4%), and 0.2% (−4.8%–5.2%) for all ages, ≥65 years, and <65 years over a lag period of 0–2 days, respectively. Similarly, a 1 °C decrease below the city-specific cold threshold was associated with average overall CVD mortality increases of 4.2% (3.0%–5.4%), 4.9% (3.5%–6.3%), and 3.1% (1.7%–4.5%), for all ages, ≥65 years, and <65 years over a lag period of 0–15 days, respectively. This work will help to take appropriate measures to reduce temperature-mortality risk in different populations in the subtropical and tropical climates of China.

Country
Australia
Related Organizations
Keywords

Monitoring, TJ807-830, Cardiovascular, TD194-195, 310, Renewable energy sources, population-specific, GE1-350, Planning and Development, Sustainability and the Environment, Policy and Law, Environmental effects of industries and plants, 3305 Geography, cardiovascular, Lag effects, Population-specific, Temperature, Subtropical, temperature, 2105 Renewable Energy, lag effects, Environmental sciences, subtropical, 2308 Management

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
gold