
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Glacier Changes between 1976 and 2015 in the Source Area of the Ayeyarwady (Irrawaddy) River, Myanmar

doi: 10.3390/w10121850
The Ayeyarwady River in Myanmar is one of the largest rivers in Southeast Asia. It is predominantly fed by monsoonal precipitation and, to a lower extent, by meltwater from glaciers located in the Himalaya mountains. Information about the glaciers in its headwater region and glacier changes is scarce. Glaciers, in general, are highly important for the hydrological system and are contributing to river flow, therefore playing a key role in water availability, especially in catchments with (semi-) arid downstream areas as is in parts of Myanmar. This study investigated 130 glaciers in the Ayeyarwady headwaters by analyzing satellite images from Landsat missions between 1976 and 2015. The results of the glacier area and volume change analyses indicate that the glaciers are experiencing unprecedented losses. Over the 39 years, the glaciers lost up to 54.3 ± 7.64% of their area and 60.09 ± 1.56% of their mass and volume. The highest losses occurred in the period 2002–2015, which corresponds to increasing global and local warming. This development will probably have a strong influence on the glaciers’ storage function and will affect the local river runoff in the headwater region.
- University of Bonn Germany
Water supply for domestic and industrial purposes, Myanmar, Hydraulic engineering, remote sensing, climate change, glacier change, TC1-978, Landsat, TD201-500
Water supply for domestic and industrial purposes, Myanmar, Hydraulic engineering, remote sensing, climate change, glacier change, TC1-978, Landsat, TD201-500
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
