Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Other literature type . 2020
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anticipating of Potential Climate and Land Use Change Impacts on Floods: A Case Study of the Lower Nam Phong River Basin

Authors: Kittiwet Kuntiyawichai; Winai Sri-Amporn; Sarayut Wongsasri; Prinya Chindaprasirt;

Anticipating of Potential Climate and Land Use Change Impacts on Floods: A Case Study of the Lower Nam Phong River Basin

Abstract

This study aimed at quantifying the impacts of climate and land use changes on flood damage on different flood occurrences. A Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) model was calibrated for the period 2005–2011 and validated in the period 2012–2017, and was used to generate hydrographs using rainfall during the period 2020–2039 from CNRM-CM5, IPSL-CM5A-MR, and MPI-ESM-LR climate models under Representative Concentration Pathways (RCPs) 4.5 and 8.5. A Hydrologic Engineering Center’s River Analysis System (HEC-RAS) model for use in generating inundation maps from hydrographs produced by HEC-HMS was calibrated and validated for 2010 and 2011 period, respectively. The climate and land use changes showed insignificant impacts on the extent of floods during 25-, 50-, and 100-year flood events, i.e., inundation in 2039 under RCP 4.5 is smaller than baseline (2000–2017) by 4.97–8.59 km2, whereas a larger difference of inundation is found for RCP 8.5 (0.39–5.30 km2). In contrast, the flood damage under RCP 4.5 (14.84–18.02 million US$) is higher than the baseline by 4.32–5.33 million US$, while the highest was found for RCP 8.5 (16.24–18.67 million US$). The agriculture was the most vulnerable, with a damage of 4.50–5.44 million US$ in RCP 4.5 and 4.94–5.72 million US$ in RCP 8.5, whereas baseline damages were 4.49–6.09 million US$. Finally, the findings are useful in the delivery of flood mitigation strategies to minimize flood risks in the lower Nam Phong River Basin.

Related Organizations
Keywords

land use change, Water supply for domestic and industrial purposes, CMIP5 general circulation models, representative concentration pathway, Hydraulic engineering, return period, climate change, TC1-978, TD201-500, flood damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold