
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climate Change Effects on Fish Passability across a Rock Weir in a Mediterranean River

doi: 10.3390/w13192758
Climate change represents a major challenge for the management of native fish communities in Mediterranean rivers, as reductions in discharge may lead to a decrease in passability through small barriers such as weirs, both in temporary and perennial rivers. Through hydraulic modelling, we investigated how discharges from a large hydropower plant in the Tagus River are expected to affect the passability of native freshwater fish species through a rock weir (Pego, Portugal), equipped with a nature-like fish ramp. We considered not only mean daily discharge values retrieved from nearby gauging stations (1991–2005) for our flow datasets, but also predicted discharge values based on climatic projections (RCP) until the end of the century (2071–2100) for the Tagus River. Results showed that a minimum flow of 3 m3 s−1 may be required to ensure the passability of all species through the ramp and that passability was significantly lower in the RCP scenarios than in the historical scenario. This study suggests that climate change may reduce the passability of native fish species in weirs, meaning that the construction of small barriers in rivers should consider the decreases in discharge predicted from global change scenarios for the suitable management of fish populations.
habitat suitability, Water supply for domestic and industrial purposes, Hydraulic engineering, climate change, low flows, TC1-978, TD201-500, fish ramp, small barriers
habitat suitability, Water supply for domestic and industrial purposes, Hydraulic engineering, climate change, low flows, TC1-978, TD201-500, fish ramp, small barriers
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
