
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Water Supply Increases N Acquisition and N Resorption from Old Branches in the Leafless Shrub Calligonum caput-medusae at the Taklimakan Desert Margin

doi: 10.3390/w13223288
Irrigation is the main strategy deployed to improve vegetation establishment, but the effects of increasing water availability on N use strategies in desert shrub species have received little attention. Pot experiments with drought-tolerant shrub Calligonum caput-medusae supplied with water at five field capacities in the range of 30–85% were conducted using local soil at the southern margin of the Taklimakan Desert. We examined the changes in plant biomass, soil N status, and plant N traits, and addressed the relationships between them in four- and seven-month-old saplings and mature shrubs after 28 months. Results showed that the growth of C. caput-medusae was highly responsive to increased soil moisture supply, and strongly depleted the soil available inorganic N pools from 16.7 mg kg−1 to an average of 1.9 mg kg−1, although the total soil N pool increased in all treatments. Enhancement of biomass production by increasing water supply was closely linked to increasing total plant N pool, N use efficiency (NUE), N resorption efficiency (NRE), and proficiency (NRP) in four-month saplings, but that to total plant N pool, NRE, and NRP after 28 months. The well-watered plants had lower N concentrations in senesced branches compared to their counterparts experiencing the two lowest water inputs. The mature shrubs had higher NRE and NRP than saplings and the world mean levels, suggesting a higher N conservation. Structural equation models showed that NRE was largely controlled by senesced branch N concentrations, and indirectly affected by water supply, whereas NRP was mainly determined by water supply. Our results indicated that increasing water availability increased the total N uptake and N resorption from old branches to satisfy the N requirement of C. caput-medusae. The findings lay important groundwork for vegetation establishment in desert ecosystems.
- Xinjiang Academy of Agricultural Sciences China (People's Republic of)
- Chinese Academy of Sciences (中国科学院) China (People's Republic of)
- Xinjiang Institute of Ecology and Geography China (People's Republic of)
- State Key Laboratory of Desert and Oasis Ecology China (People's Republic of)
- Chinese Academy of Science China (People's Republic of)
water addition, biomass, Water supply for domestic and industrial purposes, Hydraulic engineering, <i>Calligonum caput-medusae</i>, soil inorganic N, TC1-978, N resorption, TD201-500
water addition, biomass, Water supply for domestic and industrial purposes, Hydraulic engineering, <i>Calligonum caput-medusae</i>, soil inorganic N, TC1-978, N resorption, TD201-500
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
