Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Other literature type . 2022
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatio-Temporal Interpolation and Bias Correction Ordering Analysis for Hydrological Simulations: An Assessment on a Mountainous River Basin

Authors: Charalampos Skoulikaris; Panagiota Venetsanou; Georgia Lazoglou; Christina Anagnostopoulou; Konstantinos Voudouris;

Spatio-Temporal Interpolation and Bias Correction Ordering Analysis for Hydrological Simulations: An Assessment on a Mountainous River Basin

Abstract

Triggering hydrological simulations with climate change gridded datasets is one of the prevailing approaches in climate change impact assessment at a river basin scale, with bias correction and spatio-temporal interpolation being functions routinely used on the datasets preprocessing. The research object is to investigate the dilemma arisen when climate datasets are used, and shed light on which process—i.e., bias correction or spatio-temporal interpolation—should go first in order to achieve the maximum hydrological simulation accuracy. In doing so, the fifth generation of the European Centre for Medium Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) temperature and precipitation products of 9 × 9 km spatial resolution, which are considered as the reference data, are initially compared with the same hindcast variables of a regional climate model of 12.5 × 12.5 km spatial resolution over a specific case study basin and for a 10-year period (1991–2000). Thereafter, the climate model’s variables are (a) bias corrected followed by their spatial interpolation at the reference resolution of 9 × 9 km with the use of empirical quantile mapping and spatio-temporal kriging methods respectively, and (b) spatially downscaled and then bias corrected by using the same methods as before. The derived outputs from each of the produced dataset are not only statistically analyzed at a climate variables level, but they are also used as forcings for the hydrological simulation of the river runoff. The simulated runoffs are compared through statistical performance measures, and it is established that the discharges attributed to the bias corrected climate data followed by the spatio-temporal interpolation present a high degree of correlation with the reference ones. The research is considered a useful roadmap for the preparation of gridded climate change data before being used in hydrological modeling.

Keywords

Greece, Water supply for domestic and industrial purposes, Hydraulic engineering, bias correction, climate change, spatio-temporal kriging; bias correction; climate change; gridded datasets; hydrologic modeling; Greece, hydrologic modeling, gridded datasets, spatio-temporal kriging, TC1-978, TD201-500

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold