
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigating the Reliability of Stationary Design Rainfall in a Mediterranean Region under a Changing Climate

doi: 10.3390/w15122245
handle: 10447/596653
Extreme rainfall events have been more frequent in recent decades, potentially as a climate change effect. This has been leading to a higher risk of the failure of existing hydraulic infrastructures, and to a higher awareness regarding the unreliability of design rainfall calculated with reference to historical data recorded in the last century. With this in mind, the present study questions the stationary assumption of the rainfall Depth–Duration–Frequency curves commonly used in Sicily, the biggest island of the Mediterranean Sea. Quantiles derived from the most up-to-date regional method, regarding Sicily, based on observations in the period 1928–2010, have been compared with those extracted from a high-resolution dataset related to the period 2002–2022, provided by the SIAS agency. The results showed a remarkable underestimation of the rainfall quantiles calculated with the regional approach, especially at the shortest durations and low return periods. This means that new hydraulic works should be designed with reference to longer return periods than in the recent past, and those that currently exist may experience a higher risk of failure. Future investigation of this aspect is crucial for enhancing the effectiveness of water management and detecting hydrological risks under a changing climate.
- University of Palermo Italy
extreme rainfall events, Water supply for domestic and industrial purposes, design rainfall, Settore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologia, Hydraulic engineering, climate change, extreme rainfall events; climate change; design rainfall; hydraulic infrastructure; hydrological risk, hydrological risk, hydraulic infrastructure, TC1-978, TD201-500
extreme rainfall events, Water supply for domestic and industrial purposes, design rainfall, Settore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologia, Hydraulic engineering, climate change, extreme rainfall events; climate change; design rainfall; hydraulic infrastructure; hydrological risk, hydrological risk, hydraulic infrastructure, TC1-978, TD201-500
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
