Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Remote Se...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Remote Sensing
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Remote Sensing
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/5g...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/yp...
Other literature type . 2023
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combining Solar-Induced Chlorophyll Fluorescence and Optical Vegetation Indices to Better Understand Plant Phenological Responses to Global Change

الجمع بين فلورة الكلوروفيل المستحثة بالطاقة الشمسية ومؤشرات الغطاء النباتي البصري لفهم الاستجابات الفينولوجية النباتية للتغير العالمي بشكل أفضل
Authors: Yao Zhang; Josep Peñuelas;

Combining Solar-Induced Chlorophyll Fluorescence and Optical Vegetation Indices to Better Understand Plant Phenological Responses to Global Change

Abstract

Recent advances in the satellite retrieval of solar-induced chlorophyll fluorescence (SIF) provide new opportunities for understanding the phenological responses of ecosystems to global climate change. Because of the strong link between SIF and plant gross photosynthesis, phenological events derived from SIF represent the seasonal variation of ecosystem functioning (photosynthetic phenology) and differ from phenologies derived from traditional vegetation indices. We provide an overview of recent advances in remotely sensed photosynthetic phenologies, with a focus on their driving factors, their impact on the global carbon cycle, and their relationships with vegetation index-derived land surface phenology metrics. We also discuss future research directions on how to better use various phenological metrics to understand the responses of plants to global change.

Country
Spain
Keywords

Physical geography, Atmospheric sciences, Astronomy, Environmental science, Pathology, Climate change, GE1-350, Photosynthesis, Global change, Biology, Ecosystem, Climatology, Global and Planetary Change, Vegetation Monitoring, Species Distribution Modeling and Climate Change Impacts, Global Analysis of Ecosystem Services and Land Use, Ecology, Geography, Ecological Modeling, Physics, Botany, Geology, Remote Sensing in Vegetation Monitoring and Phenology, Carbon cycle, FOS: Earth and related environmental sciences, Remote sensing, GB3-5030, Environmental sciences, Phenology, Satellite, FOS: Biological sciences, Environmental Science, Physical Sciences, Medicine, Chlorophyll fluorescence, Vegetation (pathology)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Top 10%
Green
gold
Related to Research communities
Energy Research