Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Magazine of Civil En...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Magazine of Civil Engineering
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.34910/mc...
Other literature type . 2022
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Durable concrete in sewerage using non-grinded rice husk ash and water-permeable mould

Authors: Uwazuruonye, Raphael;

Durable concrete in sewerage using non-grinded rice husk ash and water-permeable mould

Abstract

here are increasing interests in using natural pozzolans as partial replacements for ordinary Portland cement (OPC) in concrete due to the benefit to the environment, low-carbon footprint, and durability improvement potentials. In the present research, open-air-burnt non-grinded rice husk ash (RHA) samples from Ganawuri-Plateau State, Nigeria, were used as a partial replacement for OPC in concrete. A water-permeable form (controlled permeability formwork – CPF) was utilized to counter the adverse effects of high-water demand. The combined effects of CPF and RHA on the cover-zone microstructure/porosity were analysed by the mercury intrusion porosimetry (MIP) test. Water sorptivity and sulphuric acid resistance properties were measured by Surface Water Absorption Test (SWAT) and accelerated sulphuric acid resistance test, respectively, to study the suitability of the concrete mixtures for sewerage concrete structures. Compared to Portland cement concrete, the RHA with CPF samples had relatively low permeability and low water sorptivity while the RHA without CPF samples showed the highest resistance to sulphuric acid attack, exhibiting no weight loss, no gypsum formation at the surface with the least surface discolouration.

here are increasing interests in using natural pozzolans as partial replacements for ordinary Portland cement (OPC) in concrete due to the benefit to the environment, low-carbon footprint, and durability improvement potentials. In the present research, open-air-burnt non-grinded rice husk ash (RHA) samples from Ganawuri-Plateau State, Nigeria, were used as a partial replacement for OPC in concrete. A water-permeable form (controlled permeability formwork – CPF) was utilized to counter the adverse effects of high-water demand. The combined effects of CPF and RHA on the cover-zone microstructure/porosity were analysed by the mercury intrusion porosimetry (MIP) test. Water sorptivity and sulphuric acid resistance properties were measured by Surface Water Absorption Test (SWAT) and accelerated sulphuric acid resistance test, respectively, to study the suitability of the concrete mixtures for sewerage concrete structures. Compared to Portland cement concrete, the RHA with CPF samples had relatively low permeability and low water sorptivity while the RHA without CPF samples showed the highest resistance to sulphuric acid attack, exhibiting no weight loss, no gypsum formation at the surface with the least surface discolouration.

Keywords

water absorption, microstructure, concrete, durability, supplementary cementitious material, TA1-2040, acid resistance, Engineering (General). Civil engineering (General), sustainability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research