Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Turkish Journal of C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Turkish Journal of Chemistry
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photocatalytic decomposition of textile dyestuffs by photosensitive metal oxide catalysts

Authors: Esra Yeliz ALTUN; Z. Tuba ŞİŞMANOĞLU; Gülin Selda POZAN SOYLU;

Photocatalytic decomposition of textile dyestuffs by photosensitive metal oxide catalysts

Abstract

Textile azo dyes are one of the pollutants in waste water that adversely affect human and environmental health. Removal of these chemicals from wastewater is important for eco-system and human health. In this study, Bi2O3 nanoflakes and ZnO were synthesized by the co-precipitation method. Adsorption and photocatalytic degradation reactions were carried out to remove dyes (Victoria blue (VB) and Malachite green (MG)) from wastewater with the photocatalysts. In order to improve the activity of catalysts, cetyltrimethylammoniumbromide (CTAB) was added as a surfactant to pure oxide structures, and Bi2O3-CTAB and ZnO-CTAB catalysts were prepared. The structural and morphological properties of these catalysts were determined by BET, XRD, DRS, FTIR, and SEM analysis. It was found that the activity of the catalyst was improved by adding surfactant to the Bi2O3. The total mineralization of VB dye was completed in 60 min under sunlight with Bi2O3-CTAB catalyst. However, the degradation of the MG dye with the same catalyst under UV-C irradiation could be completed in 120 min.

Country
Turkey
Keywords

Optimization, CTAB, metal oxide, Dye Removal, Article, Degradation, Oxidation, Nanoparticles, textile azo dyes, Adsorption, photosensitive

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
bronze