Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.4271/2023-2...
Conference object . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Direct and Indirect Exhaust Heat Recovery from Turbocharged Heavy-Duty Engine

Authors: Di Bartolomeo, Marco; Di Battista, Davide; Fatigati, Fabio; Cau, Giorgio; Cipollone, Roberto;

Direct and Indirect Exhaust Heat Recovery from Turbocharged Heavy-Duty Engine

Abstract

<div class="section abstract"><div class="htmlview paragraph">Waste Heat Recovery (WHR) is one of the most viable opportunities to reduce fuel consumption and CO2 emissions from internal combustion engines in the transportation sector. Hybrid thermal and electrical propulsion systems appear particularly interesting because of the presence of an electric battery that simplifies the management of the electrical energy produced by the recovery system. The different technologies proposed for WHR can be categorized into direct and indirect ones, if the working fluid operating inside the recovery system is the exhaust gas itself or a different one whose sequence of transformations follows a thermodynamic cycle. In this paper, a turbocharged diesel engine (F1C Iveco) equipped with a Variable Geometry Turbine (VGT) has been tested to assess the energy recoverable from the exhaust gases both for direct and indirect recovery. A direct technology based on an auxiliary turbine placed in the exhaust pipe (turbo-compounding) has been considered and compared with an Organic Rankine cycle (ORC)-based recovery unit fed by the exhaust gases. A model-based comparison between the two technologies has been assessed in this paper. The input data were the result of an experimental campaign done on the exhaust gases of the F1C Iveco operated on a high-speed dynamometer test bench. Data on exhaust gas properties, turbocharger equilibrium and engine performances were collected for a wide range of engine operating conditions. Concerning the ORC-based power unit, the model uses the significant research experience done on the sector that set up the most relevant machine performances (expander and pump efficiency, engine backpressure produced, pinch points at the two heat exchangers) so giving the model high reliability. Preliminary data on a turbo-compounding system operated on the same engine were also measured so resolving the most important uncertainties of the recovery unit (engine backpressure produced, turbine and electrical generator efficiency, matching between the turbocharging unit). A preliminary assessment of the overall potential recovery when both technologies were present has been done, focusing the attention on heavy-duty engines.</div></div>

Country
Italy
Keywords

Waste Heat Recovery, ICE, Turbocompounding, ORC-Based unts, Exhaust gases; Exhaust systems (engine); Rankine cycle; Thermodynamic properties; Waste heat recovery;

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%