Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Hull: ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.46855/2020....
Article . 2020 . Peer-reviewed
Data sources: Crossref
http://dx.doi.org/10.1016/j.en...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Constraint Multi-Objective Evolutionary Optimization of a State-of-the-Art Dew Point Cooler using Digital Twins

Authors: Golizadeh Akhlaghi, Yousef; Badiei, Ali; Zhao, Xudong; Aslansefat, Koorosh; Xiao, Xin; Shittu, Samson; Ma, Xiaoli;

A Constraint Multi-Objective Evolutionary Optimization of a State-of-the-Art Dew Point Cooler using Digital Twins

Abstract

This study is pioneered in developing digital twins using Feed-forward Neural Network (FFNN) and multi objective evolutionary optimization (MOEO) using Genetic Algorithm (GA) for a counter-flow Dew Point Cooler with a novel Guideless Irregular Heat and Mass Exchanger (GIDPC). The digital twins, takes the intake air characteristics, i.e., temperature, relative humidity as well as main operating and design parameters, i.e., intake air velocity, working air fraction, height of HMX, channel gap, and number of layers as the inputs. GIDPC’s cooling capacity, coefficient of performance (COP), dew point efficiency, wet-bulb efficiency, supply air temperature and surface area of the layers are selected as outputs. The optimum values of aforementioned operating and design parameters are identified by the MOEO to maximise the cooling capacity, COP, wet-bulb efficiencies and to minimise the surface area of the layers in four identified climates within Koppen-Geiger climate classification, namely: tropical rainforest, arid, Mediterranean hot summer and hot summer continental climates. The system monthly and annual performances in the identified optimum conditions are compared with the base system and the results show the annual improvements of up to 72.75% in COP and 23.57% in surface area. In addition, the annual power consumption is reduced by up to 49.41% when the system is designed and operated optimally. It is concluded that identifying the optimum conditions for the GIDPC can increase the system performance substantially.

Country
United Kingdom
Related Organizations
Keywords

Dew point cooler, Energy, 600, Digital twins, Neural network, 620, Environment and Sustainability, Genetic algorithm, Multi objective evolutionary optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Green