Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Ecology and Ev...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Ecology and Evolution
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2012
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2012
License: CC BY
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The genus Acacia (Fabaceae) in East Africa: distribution, diversity and the protected area network

Authors: Marshall, Andrew R; Platts, P J; Gereau, R E; Kindeketa, W; Kang'ethe, S; Marchant, R;

The genus Acacia (Fabaceae) in East Africa: distribution, diversity and the protected area network

Abstract

Background and aims - Plants are often overlooked in conservation planning, yet they are the foundation of all terrestrial ecosystems. The East Africa region is used to investigate the effectiveness of protected areas for conserving plants. With a wide range of ecosystems and 771 protected areas covering nearly one quarter of the land area, East Africa is an ideal location to assess the effectiveness of protected areas through distribution modelling of the genus Acacia. Methods - Herbarium specimen data (2,047 records) were collated from East Africa for 65 taxa (species, subspecies, varieties) from the genus Acacia. Generalised Additive Models were used to determine climatic drivers, and thence to extrapolate climatic suitability across the region. For two Acacia taxa, we investigated the potential for climate-induced range-shifts using a downscaled regional climate model under two IPCC scenarios. Key results - Approximately two thirds of Acacia diversity hotspots had < 10% coverage by protected areas. Furthermore, the protected area network covered less of the predicted ranges of the Acacia taxa and contained fewer taxa per unit area than would be expected under randomised placement. Areas with suitable climate for high-elevation, moisture-dependent taxa such as A. abyssinica subsp. calophylla are predicted to contract their potential range by up to 80% towards mountain peaks, where protected areas are dominated by low-level protection forest reserves. Conversely, the area of suitable environment for a xerophytic low-elevation species (A. turnbulliana) is predicted to increase by up to 77%. Conclusions - East Africa's national parks may not be preserving an important component of ecosystem diversity, a situation exacerbated by climate change. Even within the genus Acacia, different species are predicted to respond differently to climate change. Priority areas for research and conservation are identified based on overlap between predicted high Acacia diversity and gaps in the collection record, with northern and eastern Kenya highlighted as particularly important. High elevation protected areas are also predicted to become increasingly important as climatic refugia in a warmer future. © 2012 National Botanic Garden of Belgium and Royal Botanical Society of Belgium.

Country
Australia
Keywords

species distribution model, CLIMATE CHANGE, SPECIES DISTRIBUTION MODEL, nature reserve, 333, GAP ANALYSIS, VACHELLIA, senegalia, climate change, vachellia, SENEGALIA, FoR 0602 (Ecology), gap analysis, NATURE RESERVE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 3
  • 3
    views
    3
    downloads
    Data sourceViewsDownloads
    ZENODO33
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
15
Top 10%
Average
Average
3
3
Green
gold