Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5194/bg-202...
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://bg.copernicus.org/prep...
Article
License: CC BY
Data sources: UnpayWall
https://dx.doi.org/10.60692/6q...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/6g...
Other literature type . 2021
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing MODIS Vegetation Continuous Fields tree cover product (collection 6): performance and applicability in tropical forests and savannas

تقييم منتج الغطاء الشجري للغطاء النباتي للحقول المستمرة MODIS (المجموعة 6): الأداء وقابلية التطبيق في الغابات الاستوائية والسافانا
Authors: Rahayu Adzhar; Douglas I. Kelley; Ning Dong; Mireia Torello Raventos; E. M. Veenendaal; Ted R. Feldpausch; Oliver L. Philips; +9 Authors

Assessing MODIS Vegetation Continuous Fields tree cover product (collection 6): performance and applicability in tropical forests and savannas

Abstract

Abstract. The Moderate Resolution Imaging Spectroradiometer vegetation continuous fields (MODIS VCF) Earth observation product is widely used to estimate forest cover changes, parameterise vegetation and Earth System models, and as a reference for validation or calibration where field data is limited. However, although limited independent validations of MODIS VCF have shown that MODIS VCF's accuracy decreases when estimating tree cover in sparsely-vegetated areas, such as in tropical savannas, no study has yet assessed the impact this may have on the VCF based tree cover distributions used by many in their research. Using tropical forest and savanna inventory data collected by the TROpical Biomes In Transition (TROBIT) project, we produce a series of corrections that take into account (i) the spatial disparity between the in-situ plot size and the MODIS VCF pixel, and (ii) the trees' spatial distribution within in-situ plots. We then applied our corrections to areas identified as forest or savanna in the International Geosphere-Biosphere Programme (IGBP) land cover mapping product. All IGBP classes identified as savanna show substantial increases in cover after correction, indicating that the most recent version of MODIS VCF consistently underestimates woody cover in tropical savannas. We estimate that MODIS VCF could be underestimating tropical tree cover by between 9–15 %. Models that use VCF as their benchmark could be underestimating the carbon uptake in forest-savanna areas and misrepresenting forest-savanna dynamics. While more detailed in-situ field data is necessary to produce more accurate and reliable corrections, we recommend caution when using MODIS VCF in tropical savannas.

Keywords

Land cover, Physical geography, Environmental Engineering, Tree Height Estimation, Normalized Difference Vegetation Index, Environmental science, Engineering, Biosphere, Biome, Pathology, Climate change, Tropical and subtropical dry broadleaf forests, Agroforestry, Biology, Ecosystem, Climatology, Global and Planetary Change, Vegetation Monitoring, Global Analysis of Ecosystem Services and Land Use, Ecology, Geography, Global Forest Mapping, Moderate-resolution imaging spectroradiometer, FOS: Environmental engineering, Tropics, Geology, Remote Sensing in Vegetation Monitoring and Phenology, FOS: Earth and related environmental sciences, Remote sensing, Tropical vegetation, Aerospace engineering, MODIS, Satellite, FOS: Biological sciences, Environmental Science, Physical Sciences, Land use, Medicine, Mapping Forests with Lidar Remote Sensing, Biomass Estimation, Vegetation (pathology)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
hybrid