Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Climatearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Climate
Other literature type . 2021
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Climate
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Climate
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5194/egusph...
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Future hydrology of the cryospheric driven Lake Como catchment in Italy under climate change scenarios

Authors: Fuso F.; Casale F.; Giudici F.; Bocchiola D.;

Future hydrology of the cryospheric driven Lake Como catchment in Italy under climate change scenarios

Abstract

<p>In this paper we analyse the future hydrology of the Lake Como catchment under climate change scenarios. The management of the lake is extremely important because it is needed both to supply water for the irrigation demand of the Po Valley, and to prevent flood risk along the lake shores. The climate variations are affecting the lake operation with negative impacts both on agriculture and hydropower production. The lake dynamics are link to the cryospheric driven upstream basin, and so the use of a model able to assess the water input as related to snow cover processes is a key issue. Accordingly, we use the physically based hydrological model <em>Poli-hydro</em> able to represent the most important process in the cryospheric driven catchment. We set up and calibrated the model against lake inflows during 2002-2018, resulting in a mean error <em>Bias</em> = +2.15%, and a monthly/daily Nash-Sutcliff efficiency, <em>NSE </em>= 0.77/0.64. We then performed a stochastic disaggregation of 3 Global Circulation Models (GCMs) of the most recent Assessment report 6 (AR6) of the IPCC, under 4 different socio-economic pathways (SSPs), from which we derived daily series of rainfall and temperature to be used as inputs for the hydrological model <em>Poli-Hydro</em>. The climate projections show a potential increase of temperature at the end of the century between +0.61°C and +5.96°C, which would lead to a decrease of the total ice volume in the catchment of -50% and -77%, respectively. Future projections show generally an increase of discharge in autumn and winter (November-March) and a reduction in spring and summer (May-September). This is due to the increase of temperature with an increase of liquid precipitation instead of solid precipitation in winter and an anticipation of the snow melt peak at the beginning of spring. Possible consequences are the increase of flood hazard in the winter period and a scarcity of water availability in summer. A new regulation of Lake Como is essential to satisfy stakeholders requests.</p>

Related Organizations
Keywords

climate change, Hydrological modelling, Climate change, Hydrological projections, hydrological projections, hydrological modelling, Como lake

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
gold