Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth System Dynamic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth System Dynamics (ESD)
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5194/egusph...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth System Dynamics (ESD)
Article . 2023
Data sources: DOAJ
Copernicus Publications
Other literature type . 2023
Copernicus Publications
Other literature type . 2023
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advancing the estimation of future climate impacts within the United States

Authors: Corinne Hartin; Erin E. McDuffie; Karen Noiva; Marcus Sarofim; Bryan Parthum; Jeremy Martinich; Sarah Barr; +3 Authors

Advancing the estimation of future climate impacts within the United States

Abstract

Abstract. Evidence of the physical and economic impacts of climate change is a critical input to policy development and decision-making. In addition to the magnitude of potential impacts, detailed estimates of where, when, and to whom those damages may occur; the types of impacts that will be most damaging; uncertainties in these damages; and the ability of adaptation to reduce potential risks are all interconnected and important considerations. This study utilizes the reduced-complexity model, the Framework for Evaluating Damages and Impacts (FrEDI), to rapidly project economic and physical impacts of climate change across 10 000 future scenarios for multiple impact sectors, regions, and populations within the contiguous United States (US). Results from FrEDI show that net national damages increase overtime, with mean climate-driven damages estimated to reach USD 2.9 trillion (95 % confidence interval (CI): USD 510 billion to USD 12 trillion) annually by 2090. Detailed FrEDI results show that for the analyzed sectors the majority of annual long-term (e.g., 2090) damages are associated with climate change impacts to human health, including mortality attributable to climate-driven changes in temperature and air pollution (O3 and PM2.5) exposure. Regional results also show that annual long-term climate-driven damages vary geographically. The Southeast (all regions are as defined in Fig. 5) is projected to experience the largest annual damages per capita (mean: USD 9300 per person annually; 95 % CI: USD 1800–USD 37 000 per person annually), whereas the smallest damages per capita are expected in the Southwest (mean: USD 6300 per person annually; 95 % CI: USD 840–USD 27 000 per person annually). Climate change impacts may also broaden existing societal inequalities, with, for example, Black or African Americans being disproportionately affected by additional premature mortality from changes in air quality. Lastly, FrEDI projections are extended through 2300 to estimate the net present climate-driven damages within US borders from marginal changes in greenhouse gas emissions. Combined, this analysis provides the most detailed illustration to date of the distribution of climate change impacts within US borders.

Keywords

Dynamic and structural geology, QE1-996.5, Science, Q, Geology, QE500-639.5, Article

Powered by OpenAIRE graph
Found an issue? Give us feedback