
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Potential of load and O&M costs reductions of Multi Rotor System for the south Baltic Sea
doi: 10.5194/wes-2020-23
Abstract. Many coastal regions in Norway, Spain, Portugal, Japan or the United States are comprised of large water depths (> 50 m) making the installation of typical bottom-fixed off-shore wind turbines very difficult and expensive. This is the reason why the floating wind turbines (FOWT) are a promising solution able to exploit the high energy potential contained in these regions. The Advanced Multi-Rotor Turbine for Deep Water Off-shore Energy (AMRowe) has been undertaken to design and develop a cost–competitive, innovative floating Polish multi rotor system, aiming at the optimal usage of European off-shore wind potential. In the article, a prospective deep off-shore location in the south Baltic Sea is identified. The authors built a cost model to prove its superiority over the sites already commissioned by the Polish government. A set of metocean conditions tallied for a 50-year period is used to assess performance of the proposed multi rotor floating wind turbine and to benchmark it against a single rotor 5 MW baseline turbine. The typical load cases are also investigated to observe impact on a single rotor blade in an multi-rotor arrangement in order to begin search for the key design drivers.
- University of Strathclyde United Kingdom
- Norwegian University of Science and Technology Norway
- Lodz University of Technology Poland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
