
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mesoscale modelling of North Sea wind resources with COSMO-CLM: model evaluation and impact assessment of future wind farm characteristics on cluster-scale wake losses

Abstract. As many coastal regions experience a rapid increase in offshore wind farm installations, inter-farm distances become smaller with a tendency to install larger turbines at high capacity densities. It is however not clear how the wake losses in wind farm clusters depend on the characteristics and spacing of the individual wind farms. Here, we quantify this based on multiple COSMO-CLM simulations, each of which assumes a different, spatially invariant combination of the turbine type and capacity density in a projected, future wind farm layout in the North Sea. An evaluation of the modelled wind climate with mast and lidar data for the period 2008–2020 indicates that the frequency distributions of wind speed and wind direction at turbine hub height are skillfully modelled and the seasonal and inter-annual variations in wind speed are represented well. The wind farm simulations indicate that at a capacity density of 8.1 MW km-2 and for SW-winds, inter-farm wakes can reduce the capacity factor at the inflow edge of wind farms from 59 % to between 55 % and 40 % depending on the proximity, size and number of the upwind farms. However, the long-term impact of wake losses in and between wind farms is mitigated by adopting next-generation, 15 MW wind turbines instead of 5 MW turbines, as the annual energy generation over all wind farms in the simulation is increased by 24 % at the same capacity density. In contrast, the impact of wake losses is exacerbated with increasing capacity density, as the layout-integrated, annual capacity factor varies between 54.4 % and 44.3 % over the considered range of 3.5 to 10 MW km-2. Overall, wind farm characteristics and inter-farm distances play an essential role in cluster-scale wake losses, which should be taken into account in future wind farm planning.
- Royal Netherlands Meteorological Institute Netherlands
- "TECHNISCHE UNIVERSITEIT DELFT Netherlands
- Helmholtz Association of German Research Centres Germany
- Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research Germany
- KU Leuven Belgium
TJ807-830, 551, Renewable energy sources
TJ807-830, 551, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
