Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wind Energy Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Energy Science
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5194/wes-20...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Energy Science
Article . 2024
Data sources: DOAJ
Copernicus Publications
Other literature type . 2024
Copernicus Publications
Other literature type . 2023
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mesoscale weather systems and associated potential wind power variations in a midlatitude sea strait (Kattegat)

Authors: Jérôme Neirynck; Jonas Van de Walle; Ruben Borgers; Sebastiaan Jamaer; Johan Meyers; Ad Stoffelen; Nicole P. M. van Lipzig;

Mesoscale weather systems and associated potential wind power variations in a midlatitude sea strait (Kattegat)

Abstract

Abstract. Mesoscale weather systems cause spatiotemporal variability in offshore wind power, and insight into their fluctuations can support grid operations. In this study, a 10-year model integration with the kilometre-scale atmospheric model COnsortium for Small-scale MOdelling – CLimate Mode (COSMO-CLM) provided a wind and potential power fluctuation analysis in the Kattegat, a midlatitude sea strait with a width of 130 km and an irregular coastline. The model agrees well with scatterometer data away from coasts and small islands, with a spatiotemporal root-mean square difference of 1.35 m s−1. A comparison of 10 min wind speed at about 100 m with lidar data for a 2-year period reveals very good performance, with a slight model overestimation of 0.08 m s−1 and a high value for the Perkins skill score (0.97). From periodograms made using the Welch's method, it was found that the wind speed variability on a sub-hourly timescale is higher in winter compared to summer. In contrast, the wind power varies more in summer when winds often drop below the rated power threshold. During winter, variability is largest in the northeastern part of the Kattegat due to a spatial spin-up of convective systems over the sea during the predominant southwesterly winds. Summer convective systems are found to develop over land, driving spatial variability in offshore winds during this season. On average over the 10 summers, the mesoscale wind speeds are up to 20 % larger than the synoptic background at 17:00 UTC with a clear diurnal cycle. The winter-averaged mesoscale wind component is up to 10 % larger, with negligible daily variation. Products with a lower resolution like ERA5 substantially underestimate this ratio between the mesoscale and synoptic wind speed. Moreover, taking into account mesoscale spatial variability is important for correctly representing temporal variability in power production. The root-mean square difference between two power output time series, one ignoring and one accounting for mesoscale spatial variability, is 14 % of the total power generation.

Related Organizations
Keywords

TJ807-830, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research