
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Small-scale combined heat and power as a balancing reserve for wind – The case of participation in the German secondary control reserve

Increasing amounts of intermittent renewable energy sources (RES) are being integrated into energy systems worldwide. Due to the nature of these sources, they are found to increase the importance of mechanisms for balancing the electricity system. Small-scale combined heat and power (CHP) plants based on gas have proven their ability to participate in the electricity system balancing, and can hence be used to facilitate an integration of intermittent RES into electricity systems. Within the EU electricity system, balancing reserves have to be procured on a market basis. This paper investigates the ability and challenges of a small-scale CHP plant based on natural gas to participate in the German balancing reserve for secondary control. It is found that CHP plants have to account for more potential losses than traditional power plants. However, it is also found that the effect of these losses can be reduced by increasing the flexibility of the CHP unit.
International Journal of Sustainable Energy Planning and Management, Vol 4 (2014)
- Aalborg University Denmark
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- Aalborg University Library (AUB) Denmark
- Aalborg University Library (AUB) Denmark
- Aalborg University Denmark
H1-99, Engineering (General). Civil engineering (General), Combined heat and power, balancing reserve, Social sciences (General), electricity market, TA1-2040
H1-99, Engineering (General). Civil engineering (General), Combined heat and power, balancing reserve, Social sciences (General), electricity market, TA1-2040
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
