Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2020
License: CC BY
Data sources: ZENODO
versions View all 3 versions
addClaim

ΣIDERWIN project: electrification of primary steel production for direct CO2 emission avoidance

Authors: orcid bw Lavelaine de Maubeuge Hervé;
Lavelaine de Maubeuge Hervé
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Lavelaine de Maubeuge Hervé in OpenAIRE

ΣIDERWIN project: electrification of primary steel production for direct CO2 emission avoidance

Abstract

ΣIDERWIN project proposes to develop a breakthrough innovation compared to the present-day steel production process by applying electrochemical technique to iron metal production. The electrolysis process using renewable energies will transform any iron oxide, including those inside the by-products from other metallurgies, into steel plate with a significant reduction of energy use. This process decomposes under mild conditions but at intense reaction rate naturally occurring iron oxides such as hematite into iron metal and oxygen gas. By developing a low-CO2 steel production process, the project could contribute to the reduction of the total greenhouse gas emissions. Compared to traditional steelmaking plants, this innovative technology has several positive impacts such as: a reduction by 87% of the direct CO2 emissions; a reduction by 31% of the direct energy use; the ability to produce steel from by-products rich in iron oxides from non-ferrous metallurgy residues; an increased integration with renewable energies with a more flexible process.

Keywords

Iron making, Electrification, Electrowinning, Carbon neutrality

Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
534
426
Green