Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal of Agricultural Science Engineering and Technology
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: ZENODO
https://dx.doi.org/10.60692/yr...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/2j...
Other literature type . 2023
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biocontrol of Foot and Root Rot Disease of Groundnut (Arachis hypogaea) by Dual Inoculation with Rhizobium and Arbuscular Mycorrhiza

المكافحة الحيوية لمرض تعفن القدم والجذر في الفول السوداني (أراخيس هيبوجيا) عن طريق التلقيح المزدوج مع الجذريات والفطريات الشجرية
Authors: M. J. Rahman; Faridul Alam; Md. Nazrul Islam; MFA Anik; Mohammad Eyakub Ali;

Biocontrol of Foot and Root Rot Disease of Groundnut (Arachis hypogaea) by Dual Inoculation with Rhizobium and Arbuscular Mycorrhiza

Abstract

The present study was carried out to investigate the potential of AM (Arbuscular mycorrhiza) fungi alone and in combination with bioinoculants i.e., Rhizobium to find out the best combination on dry biomass, nodulation, colonization, and yield, along with their biocontrol against groundnut foot and root rot caused by Sclerotium rolfsii. The study was carried out under pot culture conditions in the net house of the Soil Science Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur in 2020 and 2021. The experiment was designed in RCBD with eight treatments and four replications. Peat-based rhizobial inoculum (BARI RAh-801) was used @ 1.5 kg ha-1 in this experiment. Soil-based AM inoculum containing approximately 252 spores and infected root pieces of the host plant was used in pot-1. The treatments were Arbuscular mycorrhiza (AM), Rhizobium, AM+Rhizobium, Sclerotium rolfsii, Sclerotium rolfsii+AM, Sclerotium rolfsii+Rhizobium, Sclerotium rolfsii+AM+Rhizobium and Control. Dual inoculation (AM+Rhizobium) significantly increased dry biomass, nodulation, colonization, yield, and yield attributes of groundnut compared to single inoculation or other treatments. The result showed that dual inoculation (AMF+Rhizobium) increased nut yield (59.61% in 2020 and 26.32% in 2021) and stover yield (23.21% in 2020 and 33.74% in 2021) compared to control. On the contrary, Sclerotium rolfsii+AMF+Rhizobium increased nut yield (65.50% in 2020 and 52.94% in 2021) and stover yield (36.45% in 2020 and 99.35% in 2021) compared to only Sclerotium rolfsii treatment. The plant dry biomass, nodulation, colonization, nutrient concentration and uptake were increased by dual inoculation under pathogenic and non-pathogenic conditions leading to an improved yield of groundnut. Therefore, AMF species and its combination with rhizobial inoculum were significant in the formation and effectiveness of AM fungi symbiosis. They also increased yield and reduced the incidence of foot and root rot disease in groundnut plants.

Keywords

Mechanisms of Plant Immune Response, Soil Disinfestation, Plant Science, Nodulation, Horticulture, Sclerotium, Agricultural and Biological Sciences, Inoculation, Genetics, Biomass, Vegetable Grafting Techniques and Applications, Arbuscular mycorrhiza, Symbiosis, Biology, Nutrient Uptake, Bacteria, Biocontrol, Life Sciences, Nut Yield, Agronomy, FOS: Biological sciences, Intercropping in Agricultural Systems, Agronomy and Crop Science, Rhizobium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 5
  • 5
    views
    5
    downloads
    Data sourceViewsDownloads
    ZENODO55
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
5
5
Green
hybrid
Related to Research communities
Energy Research