
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal Analysis of Some Antidiabetic Pharmaceutical Compounds

Purpose: Thermal behavior of some antidiabetic drugs such as pioglitazone hydrochloride (PTZ), rosiglitazone maleate (RGZ), glibenclamide (GBD) and glimepiride (GMP) has been studied. Methods: Thermogravimetric analysis (TGA), derivative thermogravimetry (DTG) and differential thermal analysis (DTA) techniques were used to study the thermal behavior of the drugs under investigation. Results: Thermal analysis technique was used to obtain quality control parameters such as melting point 193.13 °C, 122.42 °C, 173.75 °C and 208 °C for PTZ, RGZ, GBD and GMP, respectively. The values of melting point of gave satisfactory results in comparison to that obtained by using the official method. Non-isothermal methods were employed to determine the activation energy values of the first stage of thermal decomposition. Comparison of the activation energy values suggests the following sequence of thermal stability: GMP > GBD > RGZ > PTZ. Conclusion: The results obtained are useful for the identification of these compounds and permitted interpretations concerning their thermal decomposition. Thermal stability of pharmaceutical compounds can be studied and compared by using thermal analysis techniques.
Advanced Pharmaceutical Bulletin; eISSN 2251-7308
Decomposition, Antidiabetics, Activation energy, Thermal analysis, Therapeutics. Pharmacology, RM1-950, 610 Medical sciences; Medicine
Decomposition, Antidiabetics, Activation energy, Thermal analysis, Therapeutics. Pharmacology, RM1-950, 610 Medical sciences; Medicine
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
