Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Pharmaceuti...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Pharmaceutical Bulletin
Article . 2013
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal Analysis of Some Antidiabetic Pharmaceutical Compounds

Authors: Mohamed A. El-Ries; Magda Mohamed Ibrahim; Ali K. Attia;

Thermal Analysis of Some Antidiabetic Pharmaceutical Compounds

Abstract

Purpose: Thermal behavior of some antidiabetic drugs such as pioglitazone hydrochloride (PTZ), rosiglitazone maleate (RGZ), glibenclamide (GBD) and glimepiride (GMP) has been studied. Methods: Thermogravimetric analysis (TGA), derivative thermogravimetry (DTG) and differential thermal analysis (DTA) techniques were used to study the thermal behavior of the drugs under investigation. Results: Thermal analysis technique was used to obtain quality control parameters such as melting point 193.13 °C, 122.42 °C, 173.75 °C and 208 °C for PTZ, RGZ, GBD and GMP, respectively. The values of melting point of gave satisfactory results in comparison to that obtained by using the official method. Non-isothermal methods were employed to determine the activation energy values of the first stage of thermal decomposition. Comparison of the activation energy values suggests the following sequence of thermal stability: GMP > GBD > RGZ > PTZ. Conclusion: The results obtained are useful for the identification of these compounds and permitted interpretations concerning their thermal decomposition. Thermal stability of pharmaceutical compounds can be studied and compared by using thermal analysis techniques.

Advanced Pharmaceutical Bulletin; eISSN 2251-7308

Keywords

Decomposition, Antidiabetics, Activation energy, Thermal analysis, Therapeutics. Pharmacology, RM1-950, 610 Medical sciences; Medicine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Average
gold
Related to Research communities
Energy Research