
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An integrated approach to prevent the erosion of salt marshes in the lagoon of Venice

An integrated approach to prevent the erosion of salt marshes in the lagoon of Venice
The loss of coastal habitats is a widespread problem in Europe. To protect the intertidal salt marshes of the lagoon of Venice from the erosion due to natural and human causes which is diffusely and intensely impacting them, the European Commission has funded the demonstrative project LIFE VIMINE. LIFE VIMINE aims to protect the most interior, hard-to-access salt marshes in the northern lagoon of Venice through an integrated approach, whose core is the prevention of erosion through numerous, small but spatially-diffuse soil-bioengineering protections works, mainly placed through semi-manual labour and with low impact on the environment and the landscape. The effectiveness of protection works in the long term is ensured through routine, temporally-continuous and spatially-diffuse actions of monitoring and maintenance. This method contrasts the common approach to managing hydraulic risk and erosion in Italy which is based on large, one-off and irreversible protection actions. The sustainability of the LIFE VIMINE approach is ensured by the participatory involvement of stakeholders and the recognition that protecting salt marshes means defending the benefits they provide to society through their ecological functions, as well as protecting the jobs linked to the existence or conservation of this habitat.
EQA - International Journal of Environmental Quality, Vol 18 (2015)
Venice lagoon, salt marsh erosion, sustainability, soil bioengineering techniques, Environmental pollution, TD172-193.5, salt marsh erosion; Venice lagoon; soil bioengineering techniques; sustainability
Venice lagoon, salt marsh erosion, sustainability, soil bioengineering techniques, Environmental pollution, TD172-193.5, salt marsh erosion; Venice lagoon; soil bioengineering techniques; sustainability
2 Research products, page 1 of 1
- 2006IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
