
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Analysis of Multi-Agent-Based Adaptive Droop-Controlled AC Microgrids with PSCAD: Modeling and Simulation
Analysis of Multi-Agent-Based Adaptive Droop-Controlled AC Microgrids with PSCAD: Modeling and Simulation
A microgrid (MG) with integrated renewable energy resources can benefit both utility companies and customers. As a result, they are attracting a great deal of attention. The control of a MG is very important for the stable operation of a MG. The droop-control method is popular since it avoids circulating currents among the converters without using any critical communication between them. Traditional droop control methods have the drawback of an inherent trade-off between power sharing and voltage and frequency regulation. An adaptive droop control method is proposed, which can operate in both the island mode and the grid-connected mode. It can also ensure smooth switching between these two modes. Furthermore, the voltage and frequency of a MG can be restored by using the proposed droop controller. Meanwhile, the active power can be dispatched appropriately in both operating modes based on the capacity or running cost of the Distributed Generators (DGs). The global information (such as the average voltage and output active power of the MG and so on) required by the proposed droop control method to restore the voltage and frequency deviations can be acquired distributedly based on the Multi Agent System (MAS). Simulation studies in PSCAD demonstrate the effectiveness of the proposed control method.
- Chinese Academy of Sciences China (People's Republic of)
- Shenyang Institute of Automation China (People's Republic of)
- University of Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Alabama Agricultural and Mechanical University United States
