Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Coastal Engineering ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Coastal Engineering Proceedings
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Aalborg University Research Portal
Contribution for newspaper or weekly magazine . 2012
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Contribution for newspaper or weekly magazine . 2012
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
2012
Data sources: VBN
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LARGE SCALE EXPERIMENTS ON FARMS OF HEAVING BUOYS TO INVESTIGATE WAKE DIMENSIONS, NEAR-FIELD AND FAR-FIELD EFFECTS

Authors: Stratigaki, Vasiliki; Troch, Peter; Stallard, Timothy; Kofoed, Jens Peter; Benoit, Michel; Mattarollo, Giovanni; Babarit, Aurélien; +2 Authors

LARGE SCALE EXPERIMENTS ON FARMS OF HEAVING BUOYS TO INVESTIGATE WAKE DIMENSIONS, NEAR-FIELD AND FAR-FIELD EFFECTS

Abstract

The shrinking reserves of fossil fuels in combination with the increasing energy demand have enhanced the interest in renewable energy sources, including wave energy. In order to extract a considerable amount of wave power, large numbers of Wave Energy Converters will have to be arranged in arrays or farms using a particular geometrical layout. The operational behaviour of a single device may have a positive or negative effect on the power absorption of the neighbouring WECs in the farm (near-field effects). Moreover, as a result of the interaction between the WECs within a farm, the overall power absorption and the wave climate in the lee of the WECs is modified, which may influence neighbouring farms, other users in the sea or even the coastline (far-field effects). Several numerical studies on large WEC arrays have already been performed, but large scale experimental studies on near-field and far-field wake effects of large WEC arrays are not available in literature. Within the HYDRALAB IV European programme, the research project WECwakes has been introduced to perform large scale experiments in the Shallow Water Wave Basin of DHI, in Denmark, on large arrays of point absorbers for different layout configurations and inter-WEC spacings. The aim is to validate and further develop the applied numerical methods, as well as to optimize the geometrical layout of WEC arrays for real applications.

Country
Denmark
Keywords

Renewable energy, Wave energy, WEC farms, WEC, Wake effects, HYDRALAB IV, Large scale experiments, WEC arrays, WECwakes, Wave Energy Converters

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold