
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Gasification of Nickel-Preloaded Oil Palm Biomass with Air

This study experimentally investigates the gasification of nickel-preloaded oil palm biomass as an alternative catalytic approach to produce clean syngas. To eliminate the use of catalyst support, nickel was added directly to the oil palm mesocarp fiber via ion-exchange using an aqueous solution of nickel nitrate. Nickel species was found to disperse very well on the biomass at a nano-scale dispersion. The presence of the finely dispersed nickels on biomass enhanced syngas production and reduced tar content in the producer gas during the air gasification of biomass. It is believed that nickel particles attached on the biomass and its char promote the catalytic cracking of tar on their surface and supply free radicals to the gas phase to enhance the radical-driven gas-phase reactions for the reforming of high molecular weight hydrocarbons. The unconsumed nickel-containing char shows great potential to be re-utilised as a catalyst to further enhance the destruction of tar components in the secondary tar reduction process.
- Universiti Teknologi MARA Malaysia
- Universiti Teknologi MARA Malaysia
biomass, gasification, oil palm mesocarp fiber, nickel, Chemical engineering, tar, TP155-156
biomass, gasification, oil palm mesocarp fiber, nickel, Chemical engineering, tar, TP155-156
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
