Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OceanDocsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
OceanDocs
Report . 2009 . Peer-reviewed
Data sources: OceanDocs
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study on distribution of the ctenophore Mnemiopsis leidyi in the Caspian Sea (Iranian Coasts)

Authors: Roohi, Abolghasem; Nazaran, M.; Khoodaparast, N.; Vahadi, F.; Rostamian, M.T.; Varedi, S.A.; Yoonesipor, H.; +5 Authors

Study on distribution of the ctenophore Mnemiopsis leidyi in the Caspian Sea (Iranian Coasts)

Abstract

In the early 1980s, an alien ctenophore Mnemiopsis leidyi already known as a gelatinous zooplankton was transported (likely via ballast waters) to the Caspian Sea from its introduced or native water of the Black Sea or western Atlantic which caused negative impacts. In this report, distribution of M. Leidyi, planktonic and benthic organisms had been investigated in the Southern Caspian Sea (Iranian waters) in 6 transects consisted of Lisar, Anzali, Sefidroud, Nowshar, Babolsar and Amirabad at 26 stations during 2005 and 2006. As a whole, 1422 samples had been analyzed included 258, 346, 217, 117 and 484 belong to ctenophore, phytoplankton, zooplankton, benthos and physicochemical parameters, respectively. M. leidyi abundance and biomass were fluctuated between 284-2751 ind.m-2 and 16.9- 390/9 g.m-2 respectively in 2005 while maximum abundance and biomass were recorded in autumn and minimum in winter. In 2006, its mean abundance and biomass were 184-2150 ind.m-2 and 9.1- 209/8 g.m-2 respectively. M. leidyi maximum abundance and biomass were noted in summer and its minimum in spring and winter months. Overall, mean M. leidyi abundance and biomass were recorded in 20 m within 1202 ind.m-2 and 139.5 g.m-2 respectively. Maximum size of the ctenophore was recorded as 55 and 60 mm in 2005 to 2006 respectively, while less than 10 mm length frequency consisted 83.16 and 82.88 per cent of total population. Spatial_ temporal distribution of M. leidyi in different regions showed it was more abundant in west and east (714- 4494 ind.m-2) ratio to central parts (13-1519 ind.m-2) of the Southern Caspian Sea. Species composition of zooplankton had shown the negatively impacts of M. leidyi invasion in the period of sampling as the only 17 holozooplankton were determined with Rotatoria (7 species), Copepoda (4 species), Ciliophora (4 species) and cladocera (1 species). Zooplankton maximum abundance and biomass were recorded in February (3039742901 ind.m-3 and 372.1575.4 mg.m-3) respectively and its minimum were in July (12211601 ind.m-3 and 6.9 7.7 mg.m-3) respectively which was belonged to Rotatoria (76%) and Copepoda (10%). In this study, 21 species of benthic fauna were deter minted belong to Pseudocumidae (5 species), Gamaridae (4 species) Amphartidae (3 species), Oligochaeta, Balanidae, Xantidae, Nereidae, Scarbicularidae, Carididae, Mytilidae, Herpobdellidae and Chironomidae (each 1 species). Oligocheata was recorded with maximum abundance (943 2502 ind.m-2) and Bivalve consisted of higher biomass (68.7162.5 g.m-2). From five phyla of phytoplankton, 172 species were determined of Chrysophyta (74 species), Cyanophyta (32 species), Chlorophyta (32 species), Pyrrophyta (24 species) and Euglenophyta (13 species), in which Chrysophyta and Pyrrophyta were noted as main groups with their maximum abundance (up to 65%) and biomass (93%). Maximum water temperature was recorded in August with 29.52.5 ֯C and minimum in February by 9.31.3 ֯C. Mean value of salinity was 12.010.90 ppt, secchi disk ranged between 0.2 to 7 m and oxygen demand varied from 5.95 to 10.54 mg. l-1). Moreover, silicate concentration was recorded between 200 to 300μg.L-1, Phosphate measured from 31-47 μg.L-1, Ammonia varied in 10-29 μg.L-1, Nitrite (0.6- 1.7 μg.L-1), Nitrate (0.06-4.20 μg.L-1, which mainly accumulated in coastal waters of the southern Caspian Sea. Iranian Fisheries Science Research Institute Published

Keywords

Balanidae, Species, Amphartidae, Herpobdellidae, Organisms, Xantidae, Distribution, Zooplankton, Mnemiopsis leidyi, Physicochemical, Benthos, Carididae, Abundance, Phytoplankton, M.leidyi, Mytilidae, Nereidae, Biomass, Benthic, Oligochaeta, Scarbicularidae, Gamaridae

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green