Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

[Protontherapy: basis, indications and new technologies].

Authors: A, Mazal; J-L, Habrand; S, Delacroix; J, Datchary; R, Dendale; L, Desjardins; R, Ferrand; +2 Authors

[Protontherapy: basis, indications and new technologies].

Abstract

With over 70,000 patients treated worldwide, protontherapy has an evolution on their clinical applications and technological developments. The ballistic advantage of the Bragg peak gives the possibility of getting a high conformation of the dose distribution to the target volume. Protontherapy has accumulated a considerable experience in the management of selected rare malignancies such as uveal melanomas and base of the skull chordomas and chondrosarcomas. The growing interest for exploring new and more common conditions, such as prostate, lung, liver, ENT, breast carcinomas, as well as the implementation of large pediatric programs advocated by many experts has been challenged up to now by the limited access to operational proton facilities, and by the relatively slow pace of technical developments in terms of ion production, beam shaping and modelling, on-line verification etc. One challenge today is to deliver dynamic techniques with intensity modulation in clinical facilities as a standard treatment. We concentrate in this paper on the evolution of clinical indications as well as the potentialities of new technological concepts on ion production, such as dielectric walls and laser-plasma interactions. While these concepts could sooner or later translate into prototypes of highly compact equipments that would make easier the implantation of cost-effective hospital-based facilities, the feasibility of their clinical use must still be proved.

Keywords

Adult, Photons, Lung Neoplasms, Spinal Neoplasms, Eye Neoplasms, Sarcoma, Skull Base Neoplasms, Energy Transfer, Carcinoma, Non-Small-Cell Lung, Neoplasms, Proton Therapy, Radiation Oncology, Humans, Particle Accelerators, Child, Technology, Radiologic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Top 10%
bronze