
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of CO on the Activation, O-Vacancy Formation, and Performance of Au/ZnO Catalysts in CO2 Hydrogenation to Methanol

pmid: 31192610
Influence of CO on the Activation, O-Vacancy Formation, and Performance of Au/ZnO Catalysts in CO2 Hydrogenation to Methanol
The impact of CO on the activation and reaction characteristics of Au/ZnO catalysts in methanol synthesis from a CO2/H2 mixture was studied by kinetic, near ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy at the O K-edge, together with in situ Foureir transform infrared measurements. Transient measurements under up to industrial reaction conditions (50 bar, 240 °C) show a pronounced transient increase of the activity for methanol formation from CO2/H2 after exposure to a CO/H2 reaction gas mixture, while the steady-state activity is similar to that observed directly after oxidative pretreatment. For the reaction in CO/H2, the much longer activation phase is accompanied by formation of CO2 due to reaction of CO with the ZnO catalyst support. This leads to O-vacancy formation on the support at an extent significantly higher than in CO2/H2. The consequences of these findings on the mechanistic understanding of methanol formation from CO2/H2 on Au/ZnO and for ZnO-supported catalysts in general are discussed.
3 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
