Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Industrial Lubricati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Industrial Lubrication and Tribology
Article . 2019 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of laser surface texturing on tribological properties of Ti-6Al-4V in hydroxyethyl-cellulose water-based lubrication

Authors: Zhang Huichen; Sheng Dezun; Ni Tao; Ming Zou;

Effects of laser surface texturing on tribological properties of Ti-6Al-4V in hydroxyethyl-cellulose water-based lubrication

Abstract

Purpose This paper aims to investigate the effect of laser surface texturing on the tribological performance of Ti-6Al-4V disks sliding against Si3N4 balls under hydroxyethyl-cellulose water-based lubrication. The friction coefficients and wear losses of textured and untextured disks were measured and compared. The results indicate that the texture patterns can lead to reduction of friction and wear in the condition of water-based lubrication. Design/methodology/approach Solutions of hydroxyethyl cellulose were used as water-based lubricants. To find the optimal laser texturing parameters for the best performance enhancement, three line-like patterns were fabricated onto the disks and three machining parameters were used for each type of pattern. Tribological tests were conducted in rotation sliding with ball-on-disk contact configuration on UMT-2. Findings A higher density of texture lines leads to a larger friction and wear reduction. Compared with untextured disks, the friction coefficient is reduced from 0.043 to 0.028 for textured disks. Some unworn parts were detected in the contact region of the balls against textured disks, which were not found on the balls against untextured disks. The worn surfaces indicated that periodic geometry of the contact track was rebuilt during run-in period, which was beneficial for the formation of lubricant films. Originality/value In this work, laser surface texturing was used to reduce the friction and wear of Ti-6Al-4V specimens in water-based lubrication, which can be used to improve the tribological performance of Ti-6Al-4V components in mechanical equipment.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average