Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Climate Dynamicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Climate Dynamics
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulated decadal modes of the NH atmospheric circulation arising from intra-decadal variability, external forcing and slow-decadal climate processes

Authors: Simon Grainger; Jiale Lou; Kairan Ying; Xiaogu Zheng; Xiaogu Zheng; Carsten S. Frederiksen; Carsten S. Frederiksen; +1 Authors

Simulated decadal modes of the NH atmospheric circulation arising from intra-decadal variability, external forcing and slow-decadal climate processes

Abstract

A decadal variance decomposition method is applied to the Northern Hemisphere (NH) 500-hPa geopotential height (GPH) and the sea level pressure (SLP) taken from the last millennium (850–1850 AD) experiment with the coupled climate model CCSM4, to estimate the contribution of the intra-decadal variability to the inter-decadal variability. By removing the intra-decadal variability from the total inter-decadal variability, the residual variability is more likely to be associated with slowly varying external forcings and slow-decadal climate processes, and therefore is referred to as slow-decadal variability. The results show that the (multi-)decadal changes of the NH 500-hPa GPH are primarily dominated by slow-decadal variability, whereas the NH SLP field is primarily dominated by the intra-decadal variability. At both pressure levels, the leading intra-decadal modes each have features related to the El Nino–southern oscillation, the intra-decadal variability of the Pacific decadal oscillation (PDO) and the Arctic oscillation (AO); while the leading slow-decadal modes are associated with external radiative forcing (mostly with volcanic aerosol loadings), the Atlantic multi-decadal oscillation and the slow-decadal variability of AO and PDO. Moreover, the radiative forcing has much weaker effect to the SLP than that to the 500-hPa GPH.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average