Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2016
Data sources: Digital.CSIC
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Li/air Flow Battery Employing Ionic Liquid Electrolytes

Authors: Stefano Passerini; Anders Ochel; Anders Ochel; Elie Paillard; Elie Paillard; Pablo Palomino; Pablo Palomino; +6 Authors

Li/air Flow Battery Employing Ionic Liquid Electrolytes

Abstract

AbstractDespite the considerable initial optimism behind its development and prospective commercialization, the Li/air battery chemistry has now reached a mature stage of development, which has served to highlight the main underlying technological limitations, as well as what can realistically be expected from it. One of the main challenges is the control of the discharge product morphology, that is, Li2O2, onto the positive electrode. In this article, we show how the three‐phase configuration required to ensure cell operation can be induced in a two‐phase system made of mesoporous carbon and an ionic liquid electrolyte [N‐butyl‐N‐methylpyrrolidinium bis(trifluoromethane sulfonyl)imide, Pyr14TFSI] by means of an oxygen‐bubbling device (OBD) and a peristaltic pump. The use of a non‐flammable, non‐volatile electrolyte ensures long‐term, extensive discharging (up to 4.78 mAh cm−2), as well as operation at temperatures higher than room temperature.

Countries
Spain, Germany
Keywords

Technology, ddc:600, 600, Lithium metal, Ionic liquids, Flow batteries, Lithium/air batteries, info:eu-repo/classification/ddc/600, Mesoporous carbon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 19
    download downloads 18
  • 19
    views
    18
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC1918
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
13
Top 10%
Average
Top 10%
19
18
Green
Funded by
Related to Research communities
Energy Research