
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of the graft density of hydrophobic groups on thermo-responsive nanoparticles for anti-cancer drugs delivery

pmid: 27591946
Influence of the graft density of hydrophobic groups on thermo-responsive nanoparticles for anti-cancer drugs delivery
A series of deoxycholate-chitosan-hydroxybutyl (DAHBCs) with different degrees of substitution (DS) of hydrophobic deoxycholate (DOCA) were successfully synthesized. The lower critical solution temperature (LCST) of various DAHBCs could be adjusted from 35.4°C to 42.1°C by controlling the graft density of DOCA. DAHBCs could self-assemble into nanoparticles (NPs) which gradually evolved from irregular aggregates to spherical particles with the decrease of the DS of DOCA groups. The size of DAHBCs NPs ranged from 100nm to 250nm and their zeta potential varied between 3.85 and 12.37mV. Hemolysis tests and protein adsorption assay exhibited DAHBCs NPs had few adverse effects on the blood components even at a concentration as high as 1mg/mL. DAHBCs NPs showed high curcumin (CUR) encapsulation efficiency up to 80%. CUR-loaded DAHBCs NPs displayed thermal-dependent drug release profiles, and the release rate of CUR (∼75%) was significantly (pLCST), demonstrating the thermal-responsive release of encapsulated cargoes from the NPs. With the capacity to control the LCST of DAHBCs NPs at specific temperatures, it could be speculated that DAHBCs NPs might serve as a promising thermo-responsive nanoplatform for the delivery of antitumor drugs.
- Ocean University of China China (People's Republic of)
Antineoplastic Agents, Biocompatible Materials, Drug Delivery Systems, Humans, Nanoparticles, Hydrophobic and Hydrophilic Interactions
Antineoplastic Agents, Biocompatible Materials, Drug Delivery Systems, Humans, Nanoparticles, Hydrophobic and Hydrophilic Interactions
3 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
