Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A parametric study of methanol crossover in a flowing electrolyte-direct methanol fuel cell

Authors: D. James; Junjie Gu; Erik Kjeang; J. Goldak; Karl Kordesch; Mohammad R. Golriz;

A parametric study of methanol crossover in a flowing electrolyte-direct methanol fuel cell

Abstract

Abstract Direct methanol fuel cells (DMFCs) have significant potential to become a leading technology for energy conversion in a variety of applications. However, problems, such as methanol crossover reduce the efficiency and open circuit voltage of the cells. The novel design of flowing electrolyte-direct methanol fuel cells (FE-DMFCs) addresses this issue. Methanol molecules are effectively removed from the membrane electrode assembly (MEA) by the flowing electrolyte, and the unused fuel can be utilized externally. In this paper, a general 3D numerical computational fluid dynamics (CFD) model is established to simulate methanol crossover by convection–diffusion in the FE-DMFC. Illustrations of methanol concentration distribution and methanol molar flux densities are presented, and the performance is compared to conventional DMFCs. The results indicate that methanol crossover can be reduced significantly. A parameter study is performed where the influences of anode fuel feed concentration, electrolyte channel thickness and electrolyte volumetric flow rate on methanol crossover are evaluated. In addition, effects of various electrolyte channel orientations are determined. According to the simulations, counter flow is the superior choice of channel orientations to minimize crossover.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%