Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Phytochemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Phytochemistry
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The CYP79A1 catalyzed conversion of tyrosine to (E)-p-hydroxyphenylacetaldoxime unravelled using an improved method for homology modeling

Authors: Morten H. H. Nørholm; Morten H. H. Nørholm; Dario Vazquez-Albacete; Birger Lindberg Møller; Marco Montefiori; Lars Folke Olsen; Mohammed Saddik Motawia; +1 Authors

The CYP79A1 catalyzed conversion of tyrosine to (E)-p-hydroxyphenylacetaldoxime unravelled using an improved method for homology modeling

Abstract

The vast diversity and membrane-bound nature of plant P450s makes it challenging to study the structural characteristics of this class of enzymes especially with respect to accurate intermolecular enzyme-substrate interactions. To address this problem we here apply a modified hybrid structure strategy for homology modeling of plant P450s. This allows for structural elucidation based on conserved motifs in the protein sequence and secondary structure predictions. We modeled the well-studied Sorghum bicolor cytochrome P450 CYP79A1 catalyzing the first step in the biosynthesis of the cyanogenic glucoside dhurrin. Docking experiments identified key regions of the active site involved in binding of the substrate and facilitating catalysis. Arginine 152 and threonine 534 were identified as key residues interacting with the substrate. The model was validated experimentally using site-directed mutagenesis. The new CYP79A1 model provides detailed insights into the mechanism of the initial steps in cyanogenic glycoside biosynthesis. The approach could guide functional characterization of other membrane-bound P450s and provide structural guidelines for elucidation of key structure-function relationships of other plant P450s.

Country
Denmark
Keywords

Threonine, 540, Arginine, Models, Biological, Cytochrome P-450 Enzyme System, Oximes, Journal Article, Tyrosine, Sorghum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%