Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RUIdeRA
Article . 2022
Data sources: RUIdeRA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RUIdeRA
Article . 2018
Data sources: RUIdeRA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2018
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis

Authors: Puig Gamero, María; Argudo-Santamaria, Jara; valverde, jose luis; Sánchez Paredes, Paula; SANCHEZ-SILVA, LUZ;

Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis

Abstract

The methanol synthesis from syngas obtained through pine biomass gasification was studied using Aspen Plus® simulation software. The gasification process was simulated using a thermodynamic equilibrium model which is based on the minimization of the Gibbs free energy of the system. A double chamber gasifier, which allows the separation of the gasification and combustion zones to obtain a high-quality gas, was considered. Furthermore, part of the char was burnt in the combustion chamber increasing the bed temperature and generating all the energy needed in the process. On the other hand, effect of the gasification temperature and the steam to biomass (S/B) mass ratio during the gasification process on the syngas composition, tar yield and methanol production were evaluated. In this sense, the H2/CO ratio was calculated to stablish the best operating conditions for the production of methanol, being the best calculated operational condition of the process 900 °C and a S/B mass ratio of 0.9. In order to clean the syngas for the methanol synthesis and capture the greenhouse gases, a pressure swing adsorption (PSA) process was considered. Furthermore, the influence of pressure and temperature on the methanol synthesis was researched to select the optimal conditions for methanol production. Finally, the methanol synthesis waste stream was recycled to the combustion chamber in order to analyse its effect on the process performance. La síntesis de metanol a partir de gas de síntesis obtenido a través de la gasificación de biomasa de pino se estudió utilizando el software de simulación Aspen Plus®. El proceso de gasificación se simuló utilizando un modelo de equilibrio termodinámico que se basa en la minimización de la energía libre de Gibbs del sistema. Se consideró un gasificador de doble cámara, que permite separar las zonas de gasificación y combustión para obtener un gas de alta calidad. Además, parte del char se quemaba en la cámara de combustión aumentando la temperatura del lecho y generando toda la energía necesaria en el proceso. Por otro lado, se evaluó el efecto de la temperatura de gasificación y la relación de masa de vapor a biomasa (S/B) durante el proceso de gasificación sobre la composición del gas de síntesis, el rendimiento de alquitrán y la producción de metanol. En este sentido, el H 2Se calculó la relación /CO para establecer las mejores condiciones operativas para la producción de metanol, siendo la mejor condición operativa calculada del proceso 900 °C y una relación másica S/B de 0,9. Para limpiar el gas de síntesis para la síntesis de metanol y capturar los gases de efecto invernadero, se consideró un proceso de adsorción por oscilación de presión (PSA). Además, se investigó la influencia de la presión y la temperatura en la síntesis de metanol para seleccionar las condiciones óptimas para la producción de metanol. Finalmente, la corriente residual de la síntesis de metanol se recicló a la cámara de combustión para analizar su efecto en el rendimiento del proceso.

Country
Spain
Related Organizations
Keywords

Methanol, Metanol, Biomasa, Syngas, Aspen Plus® simulation; Biomass; Gasification; Methanol; PSA; Syngas, PSA, Gasificación, Gas de síntesis, Aspen Plus® simulation, Biomass, Simulación Aspen Plus®, Gasification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    171
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
171
Top 1%
Top 10%
Top 1%
Green