Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19

Authors: Fengqi You; Xiang Zhao; Jiří Jaromír Klemeš;

Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19

Abstract

Combating the COVID-19 pandemic has raised the demand for and disposal of personal protective equipment in the United States. This work proposes a novel waste personal protective equipment processing system that enables energy recovery through producing renewable fuels and other basic chemicals. Exergy analysis and environmental assessment through a detailed life cycle assessment approach are performed to evaluate the energy and environmental sustainability of the processing system. Given the environmental advantages in reducing 35.42% of total greenhouse gas emissions from the conventional incineration and 43.50% of total fossil fuel use from landfilling processes, the optimal number, sizes, and locations of establishing facilities within the proposed personal protective equipment processing system in New York State are then determined by an optimization-based site selection methodology, proposing to build two pre-processing facilities in New York County and Suffolk County and one integrated fast pyrolysis plant in Rockland County. Their optimal annual treatment capacities are 1,708 t/y, 8,000 t/y, and 9,028 t/y. The proposed optimal personal protective equipment processing system reduces 31.5% of total fossil fuel use and 35.04% of total greenhouse gas emissions compared to the personal protective equipment incineration process. It also avoids 41.52% and 47.64% of total natural land occupation from the personal protective equipment landfilling and incineration processes.

Related Organizations
Keywords

Article

Powered by OpenAIRE graph
Found an issue? Give us feedback