Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurobiology of Lear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurobiology of Learning and Memory
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autophosphorylation of αCaMKII downregulates excitability of CA1 pyramidal neurons following synaptic stimulation

Authors: Evgeny A. Sametsky; John F. Disterhoft; Masuo Ohno;

Autophosphorylation of αCaMKII downregulates excitability of CA1 pyramidal neurons following synaptic stimulation

Abstract

It has been well documented that alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII) is central to synaptic plasticity such as long-term potentiation, an activity-dependent strengthening of synapses that is thought to underlie certain types of learning and memory. However, the mechanisms by which alphaCaMKII may regulate neuronal excitability remain unclear. Here, we report that alphaCaMKII knock-in mice with a targeted T286A point mutation that prevents its autophosphorylation (alphaCaMKII(T286A)) showed increased excitability of CA1 pyramidal neurons compared with wild-type controls, as measured by a decrease in the slow component of post-burst afterhyperpolarization (sAHP) following high-frequency stimulation of Schaffer collateral afferent fibers. In contrast, AHP was indistinguishable between alphaCaMKII(T286A) and wild-type mice when it was evoked by somatic current injections, indicating that the hyperexcitability is observed specifically in response to synaptic stimulation in this mutant. Taken together, our results suggest that alphaCaMKII functions to downregulate CA1 neuron excitability following synaptic stimulation, presumably supporting the functionally adaptive modulation of excitability during hippocampal learning or providing a negative feedback mechanism that would prevent neurons from becoming hyperexcitable and promote network stability.

Related Organizations
Keywords

Analysis of Variance, Neuronal Plasticity, Patch-Clamp Techniques, Pyramidal Cells, In Vitro Techniques, Hippocampus, Synaptic Transmission, Electric Stimulation, Membrane Potentials, Mice, Animals, Point Mutation, Gene Knock-In Techniques, Phosphorylation, Calcium-Calmodulin-Dependent Protein Kinase Type 2

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
bronze