
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Brief Review: Electrochemical Performance of LSCF Composite Cathodes - Influence of Ceria-Electrolyte and Metals Element

Brief Review: Electrochemical Performance of LSCF Composite Cathodes - Influence of Ceria-Electrolyte and Metals Element
Solid oxide fuel cells (SOFC) are an efficient and clean power generation devices. Low-temperature SOFC (LTSOFC) has been developed since high-temperature SOFC (HTSOFC) are not feasible to be commercialized because high in cost. Lowering the operation temperature has caused substantial performance decline resulting from cathode polarization resistance and overpotential of cathode. The development of composite cathodes regarding mixed ionic-electronic conductor (MIEC) and ceria based materials for LTSOFC significantly minimize the problems and leading to the increasing in electrocatalytic activity for the oxygen reduction reaction (ORR) to occur. Lanthanum-based materials such as lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ) recently have been discovered to offer great compatibility with ceria-based electrolytes to be applied as composite cathode materials for LTSOFC. Cell performance at lower operating temperature can be maintained and further improved by enhancing the ORR. This paper reviews recent development of various ceria-based composite cathodes especially related to the ceria-carbonate composite electrolytes for LTSOFC. The influence of the addition of metallic elements such as silver (Ag), platinum (Pt) and palladium (Pd) towards the electrochemical properties and performance of LSCF composite cathodes are briefly discussed.
- National University of Malaysia Malaysia
- Tun Hussein Onn University of Malaysia Malaysia
- Tun Hussein Onn University of Malaysia Malaysia
- Universiti Malaysia Terengganu Malaysia
- National University of Malaysia Malaysia
11 Research products, page 1 of 2
- 2016IsAmongTopNSimilarDocuments
- 2003IsAmongTopNSimilarDocuments
- 2003IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2006IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
