Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Mechanics an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Mechanics and Materials
Article . 2014 . Peer-reviewed
License: Trans Tech Publications Copyright and Content Usage Policy
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemInform
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
ChemInform
Other literature type
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Brief Review: Electrochemical Performance of LSCF Composite Cathodes - Influence of Ceria-Electrolyte and Metals Element

Authors: Hamimah Abd Rahman; Sufizar Ahmad; M. S A Bakar; Andanastuti Muchtar;

Brief Review: Electrochemical Performance of LSCF Composite Cathodes - Influence of Ceria-Electrolyte and Metals Element

Abstract

Solid oxide fuel cells (SOFC) are an efficient and clean power generation devices. Low-temperature SOFC (LTSOFC) has been developed since high-temperature SOFC (HTSOFC) are not feasible to be commercialized because high in cost. Lowering the operation temperature has caused substantial performance decline resulting from cathode polarization resistance and overpotential of cathode. The development of composite cathodes regarding mixed ionic-electronic conductor (MIEC) and ceria based materials for LTSOFC significantly minimize the problems and leading to the increasing in electrocatalytic activity for the oxygen reduction reaction (ORR) to occur. Lanthanum-based materials such as lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ) recently have been discovered to offer great compatibility with ceria-based electrolytes to be applied as composite cathode materials for LTSOFC. Cell performance at lower operating temperature can be maintained and further improved by enhancing the ORR. This paper reviews recent development of various ceria-based composite cathodes especially related to the ceria-carbonate composite electrolytes for LTSOFC. The influence of the addition of metallic elements such as silver (Ag), platinum (Pt) and palladium (Pd) towards the electrochemical properties and performance of LSCF composite cathodes are briefly discussed.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average