
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Dynamic Optimal Pricing for Heterogeneous Service-Oriented Architecture of Sensor-Cloud Infrastructure

Dynamic Optimal Pricing for Heterogeneous Service-Oriented Architecture of Sensor-Cloud Infrastructure
This paper proposes a dynamic and optimal pricing scheme for provisioning Sensors-as-a-Service (Se-aaS) [1] within the sensor-cloud infrastructure. Existing cloud pricing models are limited in terms of the homogeneity in service-types, and hence, are not compliant for the heterogeneous service oriented architecture of Se-aaS. We propose a new pricing model comprising of two components, applicable for Se-aaS architecture: pricing attributed to Hardware ( pH ) and pricing attributed to Infrastructure ( pI ). pH addresses the problem of pricing the physical sensor nodes subject to variable demand and utility of the end-users. It maximizes the profit incurred by every sensor owner, while keeping in mind the end-users’ utility. pI mainly focuses on the pricing incurred due to the virtualization of resources. It takes into account the cost for the usage of the infrastructural resources, inclusive of the cost for maintaining virtualization within sensor-cloud. pI maximizes the profit of the sensor-cloud service provider (SCSP) by considering the user satisfaction. Simulation results depict improved performance of pH in comparison to the traditional hardware pricing algorithms, viz. PPM and Sprite, in terms of the residual energy, proximity to the base station (BS), received signal strength (RSS), overhead, and cumulative energy consumption. The results also show the tendency of the sensor-owners to converge to the end-user utility, but not exceed it. We also analyze the performance of pI. The results show the optimality in the profit incurred by SCSP and the user satisfaction.
5 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
