Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Services Computing
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

Dynamic Optimal Pricing for Heterogeneous Service-Oriented Architecture of Sensor-Cloud Infrastructure

Authors: Subarna Chatterjee; Ranjana Ladia; orcid Sudip Misra;
Sudip Misra
ORCID
Harvested from ORCID Public Data File

Sudip Misra in OpenAIRE

Dynamic Optimal Pricing for Heterogeneous Service-Oriented Architecture of Sensor-Cloud Infrastructure

Abstract

This paper proposes a dynamic and optimal pricing scheme for provisioning Sensors-as-a-Service (Se-aaS) [1] within the sensor-cloud infrastructure. Existing cloud pricing models are limited in terms of the homogeneity in service-types, and hence, are not compliant for the heterogeneous service oriented architecture of Se-aaS. We propose a new pricing model comprising of two components, applicable for Se-aaS architecture: pricing attributed to Hardware ( pH ) and pricing attributed to Infrastructure ( pI ). pH addresses the problem of pricing the physical sensor nodes subject to variable demand and utility of the end-users. It maximizes the profit incurred by every sensor owner, while keeping in mind the end-users’ utility. pI mainly focuses on the pricing incurred due to the virtualization of resources. It takes into account the cost for the usage of the infrastructural resources, inclusive of the cost for maintaining virtualization within sensor-cloud. pI maximizes the profit of the sensor-cloud service provider (SCSP) by considering the user satisfaction. Simulation results depict improved performance of pH in comparison to the traditional hardware pricing algorithms, viz. PPM and Sprite, in terms of the residual energy, proximity to the base station (BS), received signal strength (RSS), overhead, and cumulative energy consumption. The results also show the tendency of the sensor-owners to converge to the end-user utility, but not exceed it. We also analyze the performance of pI. The results show the optimality in the profit incurred by SCSP and the user satisfaction.

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
bronze
Upload OA version
Are you the author? Do you have the OA version of this publication?