Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wageningen Staff Pub...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2008
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Other literature type . 2008
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Water Research
Article . 2008
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate

Authors: Bijmans, M.F.M.; Peeters, T.W.T.; Lens, P.N.L.; Buisman, C.J.N.;

High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate

Abstract

Many industrial waste and process waters contain high concentrations of sulfate, which can be removed by sulfate-reducing bacteria (SRB). This paper reports on mesophilic (30 degrees C) sulfate reduction at pH 6 with formate as electron donor in a membrane bioreactor with a pH-auxostat dosing system. A mixed microbial community from full-scale industrial wastewater treatment bioreactors operated at pH 7 was used as inoculum. The pH-auxostat enabled the bacteria to convert sulfate at a volumetric activity of 302 mmol sulfate reduced per liter per day and a specific activity of 110 mmol sulfate reduced per gram volatile suspended solids per day. Biomass grew in 15 days from 0.2 to 4 g volatile suspended solids per liter. This study shows that it is possible to reduce sulfate at pH 6 with formate as electron donor at a high volumetric and specific activity with inocula from full-scale industrial wastewater treatment bioreactors operated at neutral pH. The combination of a membrane bioreactor and a pH-auxostat is a useful research tool to study processes with unknown growth rates at maximum activities.

Country
Netherlands
Related Organizations
Keywords

bioreactoren, sulfate reducing bacteria, Formates, growth, water, industrial wastes, Electrons, carbon-dioxide, Bioreactors, sulfate reduction, hydrogen-sulfide, industrieel afval, Sectie Milieutechnologie, Biomass, conversion, Particle Size, filtration, afvalwaterbehandeling, Sewage, Sulfates, reducing bacteria, removal, sulfaat reducerende bacteriën, gas-lift reactor, bioreactors, Membranes, Artificial, sulfaatreductie, methanogenesis, Hydrogen-Ion Concentration, Culture Media, membranen, sludge, waste water treatment, membranes, filtratie, Thermodynamics, Gases, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%