Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable and Sustainable Energy Reviews
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Review on the methodology used in thermal stability characterization of phase change materials

Authors: Gerard Ferrer; Ingrid Martorell; Camila Barreneche; Camila Barreneche; Luisa F. Cabeza; Aran Solé;

Review on the methodology used in thermal stability characterization of phase change materials

Abstract

In general, PCM are classified in organic and inorganic groups or families. First group mainly encloses paraffin, fatty acids, and sugar alcohols. Inorganic are mostly represented by salt hydrates, salt solutions, and metals. Eutectics and mixtures are also being formulated to obtain a desired phase change temperature. One of the most important PCM requirements is being stable after a number of repeated melting/freezing cycles, which is known as cycling stability. A PCM should present the same or almost the same thermal, chemical and physical properties after a repeated number of freezing and melting cycles. Thermal cycling tests results and detailed tests procedures are classified by PCM type in this review. Moreover, the parameters that must be considered in order to perform cycling stability tests are highlighted depending on the importance they have on the following four issues: the choice of the equipment to perform the cycling tests; the selection of the techniques to characterize the PCM before and after thermal cycling test and to follow the PCM thermal degradation; the definition of the number of cycles to perform; and finally, the choice of the heating rate and thermal cycling method (pyramid, or dynamic, or others) to perform the tests. It is mandatory to conclude that, based on the literature reviewed, no common standard for thermal cycling stability tests is available at the moment. The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/ 2007-2013) under grant agreement No. PIRSES-GA-2013-610692 (INNOSTORAGE). Furthermore, the work is partially funded by the Spanish government (ENE2011-28269-C03-02 and ENE2011- 22722). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123) and DIOPMA (2014 SGR 1543). Aran Solé would like to thank the Departament d'Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya for her research fellowship.

Country
Spain
Keywords

Phase change materials (PCM), Differential scanning calorimetry (DSC), Thermal stability, Cycling stability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 1%
Top 10%
Top 1%
Green
hybrid