Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BioEnergy Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BioEnergy Research
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BioEnergy Research
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Article . 2022
Data sources: HAL INRAE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identifying Factors Explaining Yield Variability of Miscanthus x giganteus and Miscanthus sinensis Across Contrasting Environments: Use of an Agronomic Diagnosis Approach

Authors: Ouattara, Malick; Laurent, Anabelle; Berthou, Magali; Borujerdi, Elsa; Butier, Arnaud; Malvoisin, Pierre; Romelot, Dominique; +1 Authors

Identifying Factors Explaining Yield Variability of Miscanthus x giganteus and Miscanthus sinensis Across Contrasting Environments: Use of an Agronomic Diagnosis Approach

Abstract

Abstract Miscanthus is a perennial C4 crop whose lignocellulose can be used as an alternative to the production of biosourced material. Miscanthus x giganteus (M. x giganteus) has demonstrated high maximum yields but also high yield variability across farmers’ fields. Miscanthus sinensis (M. sinensis) can be an alternative to M. x giganteus because it is considered to be more tolerant to water stress and to produce more stable yields. This study aimed to identify the main factors explaining the variability of yields across site-years for M. x giganteus and M. sinensis. A multi-local and multi-year trial network was set up in France (Ile de France and Center regions). Four treatments were established on seven sites, from spring 2013 to winter 2019: at each site, two treatments of M. x giganteus (a treatment from rhizome and a treatment from rhizome-derived plantlets) and two treatments of M. sinensis (a treatment from seed-derived plantlets established in single density and a treatment from seed-derived plantlets established in double density). We experienced 5 years of harvest because miscanthus was not harvested in 2014. First, we characterized yield variations across site-years for both genotypes. Second, we defined and calculated a set of indicators (e.g., water stress indicator, sum of degree-days of the previous year, number of frost days) that could affect miscanthus yields. Finally, we performed a mixed model with re-sampling to identify the main indicators that explained yield variability for each genotype specifically. Results showed that water stress and crop age mainly explained yield variability for both genotypes. M. sinensis yields were also affected by the sum of degree-days of the previous year of growth. Hence, genotype choice must take into account environmental characteristics. M. sinensis could indeed achieve higher and more stable yields than those of M. x giganteus in shallow sandy soils or in locations with a higher risk of low rainfall.

Country
France
Keywords

580, [SDV.SA.AGRO] Life Sciences [q-bio]/Agricultural sciences/Agronomy, Water stress, [SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy, Miscanthus, 630, Indicator of limiting factor, Miscanthus Yield variability Indicator of limiting factor Water stress Mixed model, Mixed model, Yield variability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
hybrid