Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Thermal A...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thermal Analysis and Calorimetry
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combined effect of zeolite and boric acid on thermal behavior of epoxy composites

Authors: P. M. Visakh; Tatyana V. Melnikova; Olga B. Nazarenko;

Combined effect of zeolite and boric acid on thermal behavior of epoxy composites

Abstract

The particles of natural zeolite in combination with boric acid were incorporated into the epoxy resin ED-20 in order to improve the thermal stability of epoxy polymer. Epoxy resin was cured using polyethylenepolyamine. Characterization of the epoxy composites was carried out by using Fourier transform infrared spectrometry, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) under flow of air and argon. The thermal behavior of the zeolite/boric acid-based epoxy composites (total percentage 15 mass%) were compared with that of 15 mass% boric acid-based epoxy system and the neat epoxy resin. TG and DSC results revealed that the combination of 5 mass% zeolite and 10 mass% boric acid significantly increased the mid-point temperature and residue, and decreased the maximum decomposition rate of the epoxy composites at the heating.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Average