
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea

Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea
Abstract Biogas has been considered as an alternative renewable energy, and raw biogas needs to be upgraded in order to be used as vehicle fuels or injected into the natural gas grid. In this work, the conceptual process for biogas upgrading using aqueous choline chloride (ChCl)/urea (1:2 on a molar basis) was developed, simulated and evaluated based on the commercialized software Aspen Plus. Reliable thermophysical properties and phase equilibria are prerequisite for carrying out process simulation. In order to carry out the process simulation, the thermophysical properties of ChCl/Urea (1:2) and its aqueous solutions as well as the phase equilibria of gas-ChCl/Urea (1:2), ChCl/Urea (1:2)-H2O and gas-ChCl/Urea (1:2)-H2O were surveyed and evaluated. After evaluation, the consistent experimental data of these thermophysical properties were fitted to the models embedded in Aspen Plus. The properties needed but without available experimental results were predicted theoretically. The Non-Random Two-Liquid model and the Redlich-Kwong equation (NRTL-RK) model were used to describe the phase equilibria. The equilibrium approach was used for process simulation. Sensitivity analysis was conducted to determine the reasonable operating parameters. With a set of reasonable operating conditions, the effects of ChCl/Urea (1:2) content on the total energy utilization, the diameters and pressure drops of absorber and desorber as well as the environmental assessment of the process were studied. The simulation results showed that, with the addition of ChCl/Urea (1:2), the total energy utilization decreased by 16% compared to the process with pure water, and the diameters of both absorber and desorber decreased with increasing content of ChCl/Urea (1:2). The process using aqueous ChCl/Urea (1:2) was more environmentally benign than that with pure water. Therefore, aqueous ChCl/Urea (1:2) is a promising solvent for biogas upgrading.
- Luleå University of Technology Sweden
- Nanjing University of Science and Technology China (People's Republic of)
- Nanjing University of Science and Technology China (People's Republic of)
14 Research products, page 1 of 2
- 2016IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
